Kamis, 11 April 2013

KADAR GULA SEBELUM & SESUDAH INVERSI

GULA REDUKSI DAN METODE PENENTUAN KADAR GULA REDUKSI


A. Karbohidrat
 
 
Kebanyakan ahli kimia kesulitan dalam mengelompokkan bahan apa saja yang termasuk ke dalam karbohidrat. Definisi klasik karbohidrat berdasarkan asal katanya yaitu carbo dari bahasa Latin dan hydros dari bahasa Yunani adalah ‘hidrat dari karbon’ yang mengandung hidrogen dan oksigen dengan perbandingan 2:1 (Southgate 1978) atau elemen yang terdiri dari air dan karbon dengan perbandingan 1:1 (Kennedy dan White 1988). Karbohidrat adalah senyawa organik yang mengandung karbon, hidrogen dan oksigen baik dalam bentuk molekul sederhana maupun kompleks (Christian dan Vaclavik 2003).
Karbohidrat telah menjadi sumber energi utama untuk metabolisme pada manusia dan sarana untuk memelihara kesehatan saluran pencernaaan manusia. Karbohidrat adalah penyumbang utama dari komponen yang membentuk produk pangan baik sebagai komponen alami maupun bahan yang ditambahkan. Karbohidrat meliputi lebih dari 90% dari berat kering tanaman. Karbohidrat banyak tersedia dan murah. Penggunaannya sangat luas dan jumlah penggunaannya cukup besar (Fennema 1996) baik untuk pemanis, pengental, penstabil, gelling agents dan fat replacer (Christian dan Vaclavik 2003). Karbohidrat dapat dimodifikasi baik secara kimia dan biokimia dan modifikasi itu digunakan untuk memperbaiki sifat dan memperluas penggunaannya.
B. Struktur karbohidrat
Karbohidrat digunakan dalam kimia untuk senyawa dengan formula Cm(H2O)n, tetapi kini rumus molekul itu tidak secara kaku digunakan untuk mendefinisikan karbohidrat (Kennedy dan White 1988). Sebelumnya beberapa ahli kimia memasukkan formaldehid dan glikoaldehid sebagai karbohidrat, namun sekarang istilah karbohidrat dalam biokimia, tidak mengikutsertakan senyawa yang kurang dari tiga atom karbon. Southgate (1978) menggunakan definisi karbohidrat sebagai
senyawa yang tersusun oleh polihidroksi aldehid, keton, alkohol, asam dan turunan sederhananya serta polimernya yang memiliki ikatan polimer tipe asetal. Menurut strukturnya karbohidrat dapat dibagi menjadi kelompok sakarida: monosakarida,
oligosakarida dan polisakarida. Monosakarida adalah gula sederhana yang tidak dapat dipecah lagi menjadi molekul yang lebih kecil dan monosakarida inilah yang menjadi unit penyusun dari oligosakarida dan polisakarida. Oligosakarida dan polisakarida tersusun dari monosakarida yang dihubungkan dengan ikatan glikosidik.5
a. Monosakarida
Monosakarida terdiri dari tiga sampai delapan karbon atom, tetapi umumnya hanya lima atau enam yang biasa ditemukan. Biasanya monosakarida digolongkan berdasarkan jumlah atom karbonnya, misalnya triosa (C3H6O3), tetrosa (C4H8O3), pentosa (C5H10O5) dan heksosa (C6H12O6).
Dari golongan tersebut dapat dibagi lagi berdasarkan gugus fungsional yang ada, misalnya dari golongan heksosa ada aminoheksosa (C6H13O5N), deoksiheksosa (C6H12O5) dan asam heksuronat (C6H10O7). Contoh monosakarida adalah glukosa dan fruktosa.
b. Oligosakarida
Oligosakarida terdiri dari beberapa monosakarida (2-10) yang saling terikat oleh ikatan glikosidik. Tetapi ada juga yang mengklasifikasikan sendiri karbohidrat dengan dua gugus gula sebagai disakarida. Menurut Christian dan Vaclavik (2003) disakarida terdiri dari dua molekul monosakarida yang bergabung dengan ikatan glikosidik. Contoh disakarida di pangan adalah maltosa, selubiosa, dan sukrosa. Oligosakarida yang memiliki lebih dari tiga gugus gula contohnya adalah rafinosa dan stakiosa.
c. Polisakarida
Polisakarida merupakan polimer dari gula sederhana yang tersusun atas lebih dari sepuluh monomer gula sederhana. Contoh polisakarida di makanan adalah pati, pektin dan gum. Ketiganya adalah polimer karbohidrat kompleks dengan sifat yang berbeda, tergantung unit gula penyusunnya, tipe ikatan glikosidik dan derajat percabangan molekul.
C. Pentingnya Analisis Total Karbohidrat
Total karbohidrat yang ada dalam bahan pangan perlu diketahui dengan alasan: standards of identity (pangan harus memiliki komposisi yang sesuai dengan regulasi pemerintah); nutritional labelling (menginformasi konsumen mengenai kadar nutrisi dalam bahan pangan); detection of adulteration (tiap tipe pangan memiliki 'fingerprint' karbohidrat); food quality (sifat fisikokimia dari pangan seperti kemanisan, penampakan, stabilitas dan tekstur tergantung tipe dan stabilitas
karbohidrat yang ada); ekonomi (agar lebih dapat menghemat biaya produksi bahan yang digunakan pada industri) dan food processing (efisiensi dari proses pangan banyak tergantung pada jenis dan kadar karbohidrat). Dalam berbagai studi mengenai bahan makanan penting untuk mengetahui persentasi kadar karbohidrat pada pangan yang diujikan sehingga nilai karbohidrat pada bahan lain dapat dikonversi menjadi nilai total pangan.
Kadar Gula Sebelum Dan Sesudah Inversi (Penentuan Gula Total dan Gula Reduksi) - Gula total merupakan campuran gula reduksi dan non reduksi yang merupakan hasil hidrolisa pati. Semua monosakarida dan disakarida kecuali sukrosa berperan sebagai agensia pereduksi dan karenanya dikenal sebagai gula reduksi. Kemampuan senyawa gula mereduksi agensia pengoksidasi mendasari pelbagai cara pengujian untuk glukosa dan gula-gula reduksi lainnya.  Salah satu cara untuk menentukan gula reduksi dan gula total yaitu dengan metode Nelson-Somogy.

Penentuan gula total dapat ditentukan dengan metode nelson-somogy setelah menghidrolisa ikatan glikosidik dengan asam klorida (suhu 70oC) atau dengan asam kuat suhu tinggi (pemanasan), kemudian larutan sampel yang sudah dinetralkan kembali dianalisis dengan menggunakan reagen Nelson-Somogyi. Jadi, untuk gula total dilakukan hidrolisis terlebih dahulu. Bila bahan hanya mengandung gula pereduksi, maka tidak perlu dilakukan hidrolisis, tetapi dapat langsung dilakukan perhitungan. Sedangkan untuk gula nonpereduksi, gula diubah terlebih dahulu ke dalam bentuk gula pereduksi. Jika terdapat bahan non gula, seperti pati atau karbohidrat lainnya, maka bahan-bahan tersebut harus dihilangkan terlebih dahulu.
Penentuan gula reduksi menggunakan oksidasi dengan cupri dapat menggunakan metode Nelson-Somogy, dengan prinsip bahwa cuprioksida akan bereaksi menjadi cuprooksida karena adanya gula reduksi (endapan merah bata). Jumlah endapan cuprooksida sebanding dengan jumlah gula reduksi. Sifat pereduksi dari senyawa karena adanya gugus aldehid dan keton bebas dapat mereduksi ion-ion logam seperti tembaga (Cu), perak (Ag) dalam larutan basa dengan menggunakan 2 macam reagen Nelson, yang merupakan campuran dari Nelson A (25) dan Nelson B (1). Nelson A merupakan campuran Na2CO3 anhidrat, Na2SO4, K-Na Tartarat dan Na-bikarbonat. Nelson B merupakan campuran CuSO4 dan H2SO4.
Pada kedua macam reagen tersebut yang berfungsi sebagai oksidator adalah cupri oksida yang dengan gula reduksi akan mengalami reduksi menjadi cupro oksida dan mengendap berwarna merah bata.  Cupro oksida kemudian direaksikan dengan arsenomolibdat sehingga membentuk molibdenum yang berwarna biru. Intensitas warna biru diukur dengan spektrofotometer pada panjang gelombang 540 nm. Untuk mengetahui kadar gula reduksi dalam sampel perlu dibuat kurva standar yang menggambarkan hubungan antara konsentrasi gula reduksi dengan OD.
Penentuan gula reduksi dengan menggunakan metode Nelson Somogy dilakukan untuk bahan yang kandungan gula reduksinya sangat sedikit, hal tersebut karena metode Nelson Somogy sangat peka terhadap konsentrasi karbohidrat yang rendah pada bahan.
Selain menggunakan metode Nelson-Somogy penentuan gula reduksi dan gula total dalam larutan yang sering digunakan antara lain :

Cara Munson –Walkerpenentuan gula cara ini adalah dengan menentukan banyaknya kuprooksida yang terbentuk dengan cara penimbangan atau dengan melarutkan kembali dengan asam nitrat kemudian menitrasi dengan tiosulfat. Jumlah kupro oksida yang terbentuk ekuivalen dengan banyaknya gula reduksi yang ada dalam larutan.

Cara Lane – EynonPenentuan gula cara ini adalah dengan cara menitrasi reagen Soxhlet (larutan CuSO4, K-Na-tartrat) dengan larutan gula yang diselidiki. Banyaknya larutan yang dibutuhkan untuk menitrasi reagen soxhlet perlu distandarisasi dengan larutan standar. Pada titrasi reagen soxhlet dengan larutan gula akan berakhir apabila warna larutan berubah dari biru menjadi tak berwarna. Indikator yang digunakan pada cara ini adalah metilen biru.

Cara Luff SchoorlPada penentuan gula cara ini, yang ditentukan bukannya kupro oksida yang mengendap tetapi dengan menentukan kupri oksida dalam larutan sebelum direaksikan dengan gula reduksi (titrasi blanko) dan sesudah direaksikan dengan sampel gula reduksi (titrasi sampel). Penentuannya dengan titrasi menggunakan Na-Tiosulfat. Selisih titrasi blanko dengan titrasi sampel ekuivalen dengan kupro oksida yang terbentuk dan juga ekuivalen dengan jumlah gula reduksi yang ada dalam bahan atau larutan.
 Total Karbohidrat dalam Bahan Pangan dan Metode Analisisnya
a.Definisi total karbohidrat
Total karbohidrat atau total karbohidrat menurut Badan Pengawasan Obat dan Makanan (2005) meliputi gula, pati, serat pangan dan komponen karbohidrat lain. Pernyataan jumlah total karbohidrat dalam gram penyajian yang dinyatakan dengan nilai gram terdekat, jika penyajian kurang dari 0,5 gram, jumlah kadarnya dapat dinyatakan sebagai nol dan jika penyajian lebih dari 0,5 gram dibulatkan ke kelipatan 1 gram terdekat. Total karbohidrat dapat dinyatakan dengan total
karbohidrat by difference. Total karbohidrat dalam pengukuran karbohidrat dengan metode langsung dinyatakan dalam bentuk persen yang setara dengan glukosa. Satuan glukosa (glucose equivalent) juga dapat diganti dengan larutan gula lain yang dijadikan sebagai larutan standar.
b.Metode analisis total karbohidrat
Sejumlah teknik analisis telah dikembangkan untuk mengukur jumlah dan tipe karbohidrat yang ada di bahan pangan. Kadar karbohidrat di bahan pangan dapat diketahui dengan menghitung persentase yang tersisa setelah semua komponen lain telah diukur (total carbohydrate by difference), yaitu dengan persamaan (1.1) (SNI 01-2891-1992):
(1.1)      Metode by difference ini masih digunakan oleh FDA, tetapi metode ini dapat menghasilkan nilai yang salah karena ada kemungkinan terjadi akumulasi kesalahan dari metode-metode yang digunakan untuk mengukur komponen lain, dan kemungkinan adanya komponen non karbohidrat yang terukur sebagai karbohidrat menyebabkan penyimpangan yang lebih besar. Pengukuran kadar karbohidrat secara langsung lebih baik karena didapat hasil lebih yang akurat.
2.3.2.1. Analisis karbohidrat langsung
Metode yang telah dikembangkan untuk analisis karbohidrat sangat banyak, dan tergantungjuga oleh jenis analisis (kuantitatif atau kualitatif) dan tipe karbohidrat yang dianalisis. Sehingga metode pengukuran karbohidrat sangat beragam mulai dari metode kromatografi dan elektroforesis (Kromatografi Lapis Tipis, Kromatografi Likuid Kinerja Tinggi dan Kromatografi Gas); metode kimia (metode titrasi Lane Eynon, metode gravimetri Munson Walker, metode Luff Schoorl, metode kolorimetri seperti anthrone sulfat dan fenol sulfat); metode enzimatis; metode fisik (polarimetri, indeks refraktif, densitas dan infra merah) serta metode immunoassay. Uji karbohidrat yang resmi ditetapkan oleh BSN dalam SNI 01-2891-1992 yaitu analisis total karbohidrat dengan menggunakan metode Luff Schoorl. Pada tahun 1936 International Commission for Uniform Methods of Sugar Analysis mempertimbangkan Metode Luff-Schoorl sebagai salah satu metode yang digunakan untuk menstandarkan analisis gula pereduksi karena
metode Luff Schoorl saat itu menjadi metode yang resmi dipakai di pulau Jawa, di samping nominator lainnya yaitu metode Lane-Eynon. Tetapi pada saat itu metode kolorimetri belum banyak berkembang dan dalam catatan komisi itu terdapat agenda untuk melakukan penyeragaman analisis gula dengan metode kolorimetri.
Berikut ini adalah beberapa jenis analisis total karbohidrat langsung:
1. Analisis total karbohidrat dalam SNI 01-2891-1992
Seluruh senyawa karbohidrat yang ada dipecah menjadi gula-gula sederhana (monosakarida)
dengan bantuan asam yaitu HCl dan panas. Monosakarida yang terbentuk kemudian dianalisis dengan Metode Luff-Schoorl. Prinsip analisis dengan Metode Luff-Schoorl yaitu reduksi Cu2+ menjadi Cu 1+ oleh monosakarida. Monosakarida bebas akan mereduksi larutan basa dari garam logam menjadi bentuk oksida atau bentuk bebasnya. Kelebihan Cu2+ yang tidak tereduksi kemudian dikuantifikasi dengan titrasi iodometri (SNI 01-2891-1992).
Reaksi yang terjadi (1.2):
Karbohidrat kompleks → gula sederhana (gula pereduksi)
Gula pereduksi+ 2 Cu2+→ Cu2O(s)
2 Cu2+ (kelebihan) + 4 I-→ 2 CuI2 → 2 CuI- + I2
I2 + 2S2O3
2-→ 2 I- + S4O6
2-

Osborne dan Voogt (1978) mengatakan bahwa Metode Luff-Schoorl dapat diaplikasikan untuk produk pangan yang mengandung gula dengan bobot molekuler yang rendah dan pati alami atau modifikasi.
Kemampuan mereduksi dari gugus aldehid dan keton digunakan sebagai landasan dalam mengkuantitasi gula sederhana yang terbentuk. Tetapi reaksi reduksi antara gula dan tembaga sulfat sepertinya tidak stoikiometris dan sangat tergantung pada kondisi reaksi. Faktor utama yang mempengaruhi reaksi adalah waktu pemanasan dan kekuatan reagen. Penggunaan luas dari metode ini dalam analisis gula adalah berkat kesabaran para ahli kimia yang memeriksa sifat empiris dari reaksi dan oleh karena itu dapat menghasilkan reaksi yang reprodusibel dan akurat (Southgate 1976).
Pada metode Luff Schoorl terdapat dua cara pengukuran yaitu
1. Penentuan Cu tereduksi dengan I2
2.Menggunakan prosedur Lae Eynon
Metode LuffSchoorl mempunyai kelemahan yang terutama disebabkan oleh komposisi yang konstan. Hal ini diketahui dari penelitian A.M Maiden yang menjelaskan bahwa hasil pengukuran yang diperoleh dibedakan oleh pebuatan reagen yang berbeda.
-Monosakarida akan mereduksikan CuO dalam larutan Luff menjadi Cu2O. Kelebihan CuO akan direduksikan dengan KI berlebih, sehingga dilepaskan I2. I2 yang dibebaskan tersebut dititrasi dengan  arutan Na2S2O3. Pada dasarnya prinsip metode analisa yang digunakan adalah Iodometri karena kita akan menganalisa I2 yang bebas untuk dijadikan dasar penetapan kadar. Dimana proses  odometri adalah proses titrasi terhadap iodium (I2) bebas dalam larutan. Apabila terdapat zat oksidator kuat (missal H2SO4) dalam larutannya yang bersifat netral atau sedikit asam penambahan ion iodide berlebih akan membuat zat oksidator tersebut tereduksi dan membebaskan I2 yang setara jumlahnya dengan dengan banyaknya oksidator. I2 bebas ini selanjutnya akan dititrasi dengan larutan standar Na2S2O3 sehinga I2 akan membentuk kompleks iod-amilum yang tidak larut dalam air. Oleh karena itu, jika dalam suatu titrasi membutuhkan indicator amilum, maka penambahan amilum sebelum titik ekivalen.Metode Luff Schoorl ini baik digunakan untuk menentukan kadar karbohidrat yang berukuran sedang. Dalam penelitian M.Verhaart dinyatakan bahwa metode Luff Schoorl merupakan metode tebaik untuk mengukur kadar karbohidrat dengan tingkat kesalahan sebesar 10%.
Dalam proses pengujian ini yang menjadi indikator proses analisa berhasil atau tidak yaitu saat penambahan larutan sampel dengan amilum. Bila terbentuk warna biru tua maka prosesnya benar, namun bila tidak terbentuk warna biru tua berarti larutan KI yang telah ditambahkan telah menguap dan proses dikatakan salah. Pada sampel yang kelompok kami uji, yaitu larutan pisang, setelah melalui serangkaian tahap dan pada saat penambahan KI 20% mengalami perubahan warna menjadi biru tua hampir hitam. Hal ini menandakan proses analisa yang kami lakukan benar dan sesuai dengan teori.
Untuk mengetahui kadar I2 yang bebas dilakukan titrasi dengan Natrium Thiosulfat karena banyaknya volume Na.Thiosulfat yang digunakan sebanding dengan banyaknya I2 bebas yang dianggap sebagai kadar gula. Titrasi ini dihentikan hingga warna biru tua hilang dan larutan berubah warna menjadi putih..

2. Analisis total karbohidrat dengan Metode Anthrone sulfat
Penggunaan Metode Anthrone untuk analisis total karbohidrat mulai berkembang sejak penggunaan pertama kali oleh Dreywood pada tahun 1946 untuk uji kualitatif. Dasar dari reaksi ini adalah kemampuan karbohidrat untuk membentuk turunan furfural dengan keberadaan asam dan panas, yang kemudian diikuti dengan reaksi dengan anthrone yang menghasilkan warna biru kehijauan (Sattler dan Zerban 1948) dalam Brooks et al (1986).
Anthrone, C6H4COC6H4CH2, adalah turunan dari anthraquinone. Senyawa ini diproduksi oleh reduksi katalitik dari anthraquinone oleh asam hidroklorat dengan keberadaan logam timah. Senyawa ini mungkin ada dalam bentuk keto atau enol, yang masing-masing dikenal dengan nama anthrone and anthranol. Reaksinya dapat dilihat pada persamaan (1.3):
(1.3)
Mekanisme pembentukan warna anthrone dengan gula telah diteliti. Hurd dan Isenhour (1932) dan Wolfrom et al (1948) mempostulasikan bahwa karbohidrat dan turunannya mengalami pembentukan cincin dalam keberadaan asam kuat dari mineral, seperti yang ditunjukkan untuk glukosa (1.4):
(1.4)
Tiap tahap adalah pemecahan dari glukosa(I) menjadi 5-(hydroxymethyl)-2-furaldehyde(IV) menunjukkan dehidrasi baik pada double bond atau pembentukan cincin. Wolfrom et al. (1948) menunjukkan bukti spektroskopik untuk senyawa intermediate (II) dan (III) pada reaksi ini Sattler and Zerban (1948) menyarankan bahwa pembentukan warna hijau pada reaksi anthrone tergantung oleh keberadaan 5-(hidroksimetil)-2-furaldehid, atau senyawa furfural yang mirip, yang dibentuk
oleh reaksi asam sulfat pada karbohidrat. Momose et al. (1957) melakukan kromatografi pada ekstrak benzene dari pewarna terhadap alumina dan menunjukkan bahwa bagian yang dapat larut dari benzene-terdiri dari beberapa
pewarna yang memberikan pewarnaan yang berbeda dengan asam sulfat. Mereka menentukan berat molekul dari salah satu pewarna utama yaitu kurang lebih 530, dan mempostulasikan formula dari pewarna itu (C47H30O3). Mereka menyimpulkan bahwa 3 mol anthrone bereaksi dengan 1 mol glukosa, yang digambarkan dalam persamaan (1.5):
3C14H10O + C6H12O6  C47H3O30 + 5H2O + CH2O (1.5)
Dari data analisis dan spektrum inframerah dari pewarna, dan mekanisme reaksinya dipertimbangkan, mereka menduga struktur yang mungkin adalah 1,2,5,- atau 1,3,5,-trianthronylidenepentane. Ludwig dan Goldberg (1956) melaporkan adaptasi dari Metode Anthrone kolorimetri untuk analisis total karbohidrat secara kuantitatif pada pangan. Metode yang digunakan relatif cepat dan akurat serta lebih baik daripada metodologi analisis karbohidrat sebelumnya, yaitu metode
Somogyi-Shaffer-Hartmann yang menggunakan teknik teknik iodometri dan prinsip gula pereduksi. Mereka menunjukkan bahwa persiapan hidrolisis dan deproteinisasi tidak perlu dilakukan ketika teknik anthrone digunakan.
Uji Anthrone ini memiliki kelebihan dalam hal sensitifitas dan kesederhanaan ujinya (Koehler 1952).Sejumlah kecil karbohidrat dapat memberikan warna yang terdeteksi dengan menggunakan spektrofotometer. Dreywood (1946) melakukan uji spesifisitas dari reaksi dan membuat daftar 18 jenis karbohidrat, termasuk beberapa turunan selulosa, yang memberikan hasil positif. Dia juga melaporkan hasil negatif terhadap kelompok besar nonkarbohidrat, termasuk sejumlah resin sintetik nonselulosa, asam organik, aldehid, fenol, lemak, terpena, alkaloid, dan
protein. Nonkarbohidrat yang menunjukkan hasil positif hanya furfural, tetapi hasil positif ini cepat menghilang karena warna hijau dikaburkan oleh presipitat coklat. Morris (1948) juga menunjukkan spesifisitas anthrone untuk karbohidrat sangat tinggi, dan dia melaporkan reaksi positif untuk semua mono-, di-, dan polisakarida murni yang diujikan, juga sampel of dekstrin, dekstran, pati, polisakarida tumbuhan dan gum, polisakarida tipe II dan II dari pneumococcus, glukosida, dan senyawa asetat dari mono-, di-, dan polisakarida. Kekurangan dari Metode Anthrone adalah ketidakstabilan dari reagen (anthrone yang dilarutkan dalam asam sulfat), sehingga perlu dilakukan persiapan reagen yang baru setiap hari.
Dreywood (1946) memperhatikan bahwa panas yang dihasilkan oleh pelarutan asam sulfat merupakan bagian yang penting dalam uji. Morris (1948) melihat signifikansi dari panas pada reaksi anthrone dan menunjukkan bahwa pada sejumlah karbohidrat yang diberikan, intensitas warna bervariasi dengan jumlah panas yang dihasilkan. Oleh karena itu kurva standar juga perlu dibuat setiap hari.
Nilai total karbohidrat tidak dapat dinyatakan dalam persen karbohidrat, tetapi lebih baik dinyatakan dengan istilah glucose equivalents per cent, karena kepekatan warna yang dihasilkan dari reaksi anthrone bervariasi dengan tipe gula yang ada. Kepekatan warna yang sama contohnya, ditunjukkan oleh 100 μg. glukosa, 105 μg. maltosa, dan 111 μg glikogen. Gula murni lain selain glukosa dapat dikalkulasi dengan faktor konversi. Tetapi jika terdapat campuran karbohidrat yang tidak diketahui pada bahan pangan faktor konversi itu tidak dapat digunakan, dan hasilnya bukan persentase karbohidrat absolut, melainkan ekuivalen glukosa, yang dapat bervariasi dari nilai persentasi karbohidrat yang sebenarnya dengan jumlah yang tidak dapat ditentukan. Keganjilan ini tidak signifikan ketika nilai glucose equivalents per cent digunakan hanya sebagai basis untuk mengkonversi nilai total karbohidrat menjadi nilai total pangan (Beck dan Bibby 1961). Untuk tujuan ini glucose equivalents per cent hanya sebagai indeks dari persentasi absolute dari masing-masing karbohidrat dalam pangan.
 

Identifikasi Kandungan Gula Pereduksi Dalam Makanan


Judul        : Identifikasi Kandungan Gula Pereduksi Dalam Makanan
Tujuan Kegiatan
Dapat Mengidentifikasi Kandungan Monosakarida Pada Makanan
Alat
1.        Tabung reaksi
2.        Gelas kimia
3.        Penangas air/pembakar spiritus
4.        Penjepit tabung
Bahan
1.         Reagent Cu
2.         Aquades
3.        Bahan uji yang berupa makanan yang diprediksi mengandung monosakarida.
Prosedur Percobaan
  1. Masukan +/- 10 gram bahan uji kedalam tabung reaksi dan tambahkan 5 mL air.
  2. Tambahkan 25 ml reagent Cu ke dalam tabung reaksi.
  3. Panaskan tabung reaksi 3 menit.
  4. Amati perubahan warna yang terjadi.
Indikator
Jika larutan berubah warna dari biru menjadi kuning-orange-merah berarti hasil uji positif (mengandung monosakarida)
Tabel Pengamatan
No
Bahan uji
Perubahan warna
1.
Madu
2.
Gula pasir
3.
Susu
4.
Gula aren
5.
 
Posted by : http://nurhaey.blogspot.com,http://labkim-ia.blogspot.com

Gula Reduksi Gula reduksi adalah gula yang dalam bentuk larutan alkali membentukaldehida atau keton. Gula reduksi dapat mereduksi ion logam karenamempunyai gugus aldehida atau keton yang dapat menarik kembali O2 dari logambasa, sehingga logam basa akan tereduksi dan mengendap sebagai Cu2O. Gulainvert termasuk golongan gula reduksi karena dapat mereduksi ion tembaga dalamlarutan alkali.Salah satu yang termasuk gula reduksi adalah gula invert. Gula invertdihasilkan dari hidrolisis sukrosa menghasilkan glukosa dan fruktosa. Sukrosabereaksi bersama asam dalam campuran air dengan bantuan enzim invertase. 
Penentuan Kadar Gula Penentuan Gula Reduksi Cara Munson-Walker (Munson-Walker General Methode: AOAC, 1970) 
Penentuan gula reduksi menurut cara Munson-Walker dipakai untuk penentuan glukosa, fruktosa, gula invert, laktosa monohidrat dalam bahan yang tidak mengandung sakarosa, juga dipakai untuk penentuan gula invert dan laktosa monohidrat dalam bahan yang mengandung sakarosa. Penentuan gula reduksi didasarkan atas banyaknya endapan Cu2O yang terbentuk dan dibandingkan dengan Tabel Hammond maka dapat diketahui jumlah gula reduksi. Jumlah Cu2O ditentukan secara gravimetric, yaitu menimbang langsung endapan Cu2O yang terbentuk atau secara volumetric, yaitu dengan titrasi menggunakan larutan Na-thiosulfat (Na2S2O3) atau K-permanganat (KMnO4).
 1. Penyiapan larutan sample dan pembentukan endapan Cu2O 
a. Timbang sample yang berupa bahan padat yang telah dihaluskan atau bahan cair sebanyak 2,5-25 g. banyaknya sample yang ditimbang tergantung dari kadar gula pada sample dan volume larutan sample maupun pengenceran yang akan dikerjakan pada tahap berikutnya 
b. Pindahkan secara kuantitatif ke dalam labu takar yang volumenya ditentukan sedemikian sehingga setiap 50 mL larutan sample yang siap dianalisa membentuk 11,3-489,7 mg Cu2O yang setara dengan 4,6-236,9 mg glukosa (Tabel Hammond). 
c. Tambahkan aquades sebanyak ½ – ¾ volume labu takar yang dipakai, gojog dan biarkan mengendap. 
d. Tambahkan larutan Pb-asetat netral (Lampiran 1) tetes demi tetes. Pada penambahan larutan Pb-asetat ini larutan sample menjadi keruh (terbentuk gumpalan-gumpalan atau partikel-partikel berwarna putih). Setiap kali menambahkan Pb-asetat, larutan kemudian digojog dan biarkan dulu partikel-partikel yang ada mengendap. Kemudian teteskan lagi larutan Pb-asetat, apabila ternyata tidak menimbulkan pengeruhan lagi berarti penambahan Pb-asetat telah cukup. Hindarkan penambahan Pb-asetat yang terlalu berlebihan. Kemudian tambahkan aquades sampai tanda dan disaring. 
e. Untuk menghilangkan kelebihan Pb yang digunakan, tambahkan sedikit demi sedikit kristal K- atau Na-oksalat sama seperti menambahkan Pb –asetat tersebut di atas sampai diperoleh filtrate bebas Pb. Filtrate bebas Pb apabila ditambah K- atau Na-oksalat tidak membentuk endapan putih (tetap jernih). 
f. Ke dalam gelas piala 400 mL, tuangkan 25 mL larutan CuSO4 (lampiran 2) dan 25 mL larutan tartrat alkalis (Lampiran 3), kemudian tambahkan 50 mL filtrate bebas Pb. Tutuplah gelas piala dengan gelas arloji. g. Taruhlah gelas piala pada kasa asbes dan panaskan di atas nyala api Bunsen atau alat pemanas listrik. Aturlah pemanasan sedemikian sehingga larutan harus sudah mendidih dalam waktu 4 menit, kemudian lanjutkan pemanasan tersebut selama 2 menit. Harap diperhatikan bahwa ketentuan lama pemanasan tersebut harus betul-betul ditepati. Oleh karena itu dianjurkan untuk mencoba terlebih dulu, yaitu dengan memanaskan 50 ml reagensia yang digunakan dan 50 mL aquades sehingga dapat diketahui cara mengatur alat pemanas yang bias memenuhi ketentuan di atas. 
h. Dengan pemanasan tersebut akan terbentuk endapan Cu2O, kemudian masih dalam keadaan panas saringlah dengan menggunakan krus Gooch yang telah diberi lapisan asbes sebaagai bahan penyaring (Lampiran 4).
i. Buat penentuan blanko dengan cara yang sama menggunakan 25 mL larutan CuSO4, 25 mL larutan tartrat alkalis dan 50 mL aquades. 
j. Cucilah endapan Cu2O dalam krus Gooch tersebut dengan aquades yang suhunya 60 °C sampai bersih. 
2. Tentukan banyaknya Cu2O yang terbentuk dengan salah satu cara di bawah ini. 
a. Penentuan Cu2O secara gravimetric - Endapan Cu2O dalam kedua krus Gooch (sample maupun blanko) masing-masing dicuci dengan 10 mL alcohol, kemudian dengan 10 mL ether. - Keringkan dalam oven bersuhu 100 °C selama 30 menit, dinginkan dalam desikator dan ditimbang - Dari selisih antara berat Cu2O yang terdapat pada penentuan contoh dan blanko, berat gula reduksi dalam 50 mL larutan sample dapat dicari dengan menggunakan table Hommand. 
b. Penentuan Cu2O secara volumetric dengan Natrium-thiosulfat - Endapan Cu2O dalam kedua krus Gooch, masing-masing diperlakukan sebagai berikut. - Siapkan Erlenmeyer 250 mL yang mempunyai tanda untuk volume dengan interval 20 mL (bila tidak ada dapat dibuat sendiri). - Endapan dalam krus Gooch ditutup dengan gelas arloji. Kemudian tambahkan 5 mL larutan HNO3 (1+1) untuk melarutkan Cu2O. Penambahan dilakukan dengan pipet, gelas arloji (tutup) dibuka seperlunya saja ketika memasukkan ujung pipet tersebut. - Tampung filtrate dengan Erlenmeyer tersebut diatas. Cucilah gelas arloji dan krus Gooch dengan 20-25 mL aquades. - Didihkan sampai kabut berwarna merah habis, dan tambahkan larutan Brom jenuh (Br-H2O) sedikit berlebihan, didihkan sampai semua Brom habis. - Dinginkan dan tambahkan larutan Na-asetat sebanyak 10 mL (574 g Na-asetat trihidrat/liter). Tambahkan larutan KI 42 % yang bereaksi agak basis seperlunya. Penting diperhatikan bahwa konsentrasi KI dalam larutan yang dianalisa harus dijaga tetap. Oleh karena itu penambahannya harus diperhitungkan. Apabila volume total larutan setelah dititrasi selesai diperkirakan mencapai 100 mL, maka ke dalam larutan tersebut harus sudah ditambahkan 4.2-5 g KI. Apabila ternyata setelah mencapi volume 100 mL titrasi belum juga selesai, tambahkan lagi larutan KI yang banyaknya proposional dengan bertambahnya volume. Untuk setiap penambahan 20 mL, ditambahkan 2-2,4 mL larutan KI 42 %. Penambahan dilakukan dengan biuret. - Titrasi dengan larutan Na-thiosianat (39 g Na2S2O3.5 H2O/liter) sampai warna kuning muda. Tambahkan larutan pati (Lampiran 5) sampai terbentuk warna biru, lanjutkan titrasi. Pada saat titrasi hamper selesai, tambahkan 2 g KCNS, aduk hingga larut dan lanjutkan titrasi sampai seluruh endapan berwarna putih. - Dari selisih antara titrasi sample dan blanko, berat Cu2O dapat dihitung. 1 mL larutan Na2S2O3 = 11,259 mg Cu2O Berdasarkan berat Cu atau Cu2O, berat gula reduksi dalam 50 mL larutan sample dapat dicari dengan menggunakan Tabel Hammond. 

1 komentar:

  1. Boleh lihat tabel Hammnd dan lampiran-lampiran dalam uji Munson-Walker?

    BalasHapus