Sabtu, 06 April 2013

BIOMOLEKUL

Biomolekul

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Langsung ke: navigasi, cari
Struktur myoglobin
Biomolekul merupakan senyawa-senyawa organik sederhana pembentuk organisme hidup dan bersifat khas sebagai produk aktivitas biologis. Biomolekul dapat dipandang sebagai turunan hidrokarbon, yaitu senyawa karbon dan hidrogen yang mempunyai kerangka dasar yang tersusun dari atom karbon, yang disatukan oleh ikatan kovalen. Kerangka dasar hidrokarbon bersifat sangat stabil, karena ikatan tunggal dan ganda karbon-karbon menggunakan pasangan elektron bersama-sama secara merata. Biomolekul bersifat polifungsionil, mengandung dua atau lebih jenis gugus fungsi yang berbeda. Pada molekul tersebut, tiap gugus fungsi mempunyai sifat dan reaksi kimia sendiri-sendiri.

Bentuk senyawa biomolekul

Senyawa-senyawa biomolekul biasanya dikenal dalam empat bentuk: protein, asam nukleat, karbohidrat, dan lipid. Keempat golongan biomolekul tersebut mempunyai sifat umum memiliki struktur yang relatif besar (berat molekul besar), dan karenanya disebut makromolekul.
Berat molekul (BM) protein berkisar antara 5000 sampai lebih dari 1 juta; berat molekul berbagai jenis asam nukleat berkisar sampai beberapa milyar, karbohidrat (polisakarida) dapat memiliki berat molekul sampai jutaan. Molekul lipid jauh lebih kecil (BM 750 sampai 1500). Tetapi karena lipid umumnya terbentuk dari ribuan molekul sehingga membentuk struktur berukuran besar yang berfungsi seperti sistem makromolekuler, struktrur lipid juga dapat dianggap sebagai makromolekul.
Protein merupakan polimer asam-asam amino, karbohidrat merupakan polimer monosakarida, asam nukleat merupakan polimer mononukleatida. Monomer lipid ada bermacam-macam, bergantung pada jenis lipidnya, diantaranya asam lemak, kolin, etanolamin, serin dan lain-lain.

Fungsi biomolekul

Biomolekul mempunyai fungsi tertentu dalam sel, misalnya:
  • protein sebagai enzim, alat transpor, antibodi, hormon dan pembentuk membran;
  • karbohidrat sebagai sumber energi, komponen pembentuk membran dan dinding sel;
  • lipid sebagai sumber energi, hormon, dan pembentuk sel;
  • asam nukleat sebagai faktor genetika, koenzim, pembawa energi, dan pengatur biosintesis protein.

Karbohidrat

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Butir-butir pati, salah satu jenis karbohidrat cadangan makanan padat umbuhan, dilihat dengan mikroskop cahaya.
Karbohidrat ('hidrat dari karbon', hidrat arang) atau sakarida (dari bahasa Yunani σάκχαρον, sákcharon, berarti "gula") adalah segolongan besar senyawa organik yang paling melimpah di bumi. Karbohidrat memiliki berbagai fungsi dalam tubuh makhluk hidup, terutama sebagai bahan bakar (misalnya glukosa), cadangan makanan (misalnya pati pada tumbuhan dan glikogen pada hewan), dan materi pembangun (misalnya selulosa pada tumbuhan, kitin pada hewan dan jamur). Pada proses fotosintesis, tetumbuhan hijau mengubah karbon dioksida menjadi karbohidrat.
Secara biokimia, karbohidrat adalah polihidroksil-aldehida atau polihidroksil-keton, atau senyawa yang menghasilkan senyawa-senyawa ini bila dihidrolisis. Karbohidrat mengandung gugus fungsi karbonil (sebagai aldehida atau keton) dan banyak gugus hidroksil. Pada awalnya, istilah karbohidrat digunakan untuk golongan senyawa yang mempunyai rumus (CH2O)n, yaitu senyawa-senyawa yang n atom karbonnya tampak terhidrasi oleh n molekul air. Namun demikian, terdapat pula karbohidrat yang tidak memiliki rumus demikian dan ada pula yang mengandung nitrogen, fosforus, atau sulfur.
Bentuk molekul karbohidrat paling sederhana terdiri dari satu molekul gula sederhana yang disebut monosakarida, misalnya glukosa, galaktosa, dan fruktosa. Banyak karbohidrat merupakan polimer yang tersusun dari molekul gula yang terangkai menjadi rantai yang panjang serta dapat pula bercabang-cabang, disebut polisakarida, misalnya pati, kitin, dan selulosa. Selain monosakarida dan polisakarida, terdapat pula disakarida (rangkaian dua monosakarida) dan oligosakarida (rangkaian beberapa monosakarida).

Peran biologis

Peran dalam biosfer

Fotosintesis menyediakan makanan bagi hampir seluruh kehidupan di bumi, baik secara langsung atau tidak langsung. Organisme autotrof seperti tumbuhan hijau, bakteri, dan alga fotosintetik memanfaatkan hasil fotosintesis secara langsung. Sementara itu, hampir semua organisme heterotrof, termasuk manusia, benar-benar bergantung pada organisme autotrof untuk mendapatkan makanan.
Pada proses fotosintesis, karbon dioksida diubah menjadi karbohidrat yang kemudian dapat digunakan untuk mensintesis materi organik lainnya. Karbohidrat yang dihasilkan oleh fotosintesis ialah gula berkarbon tiga yang dinamai gliseraldehida 3-fosfat.menurut rozison (2009) Senyawa ini merupakan bahan dasar senyawa-senyawa lain yang digunakan langsung oleh organisme autotrof, misalnya glukosa, selulosa, dan amilum.

Peran sebagai bahan bakar dan nutrisi

Kentang merupakan salah satu bahan makanan yang mengandung banyak karbohidrat.
Karbohidrat menyediakan kebutuhan dasar yang diperlukan tubuh makhluk hidup. Monosakarida, khususnya glukosa, merupakan nutrien utama sel. Misalnya, pada vertebrata, glukosa mengalir dalam aliran darah sehingga tersedia bagi seluruh sel tubuh. Sel-sel tubuh tersebut menyerap glukosa dan mengambil tenaga yang tersimpan di dalam molekul tersebut pada proses respirasi seluler untuk menjalankan sel-sel tubuh. Selain itu, kerangka karbon monosakarida juga berfungsi sebagai bahan baku untuk sintesis jenis molekul organik kecil lainnya, termasuk asam amino dan asam lemak.
Sebagai nutrisi untuk manusia, 1 gram karbohidrat memiliki nilai energi 4 Kalori. Dalam menu makanan orang Asia Tenggara termasuk Indonesia, umumnya kandungan karbohidrat cukup tinggi, yaitu antara 70–80%. Bahan makanan sumber karbohidrat ini misalnya padi-padian atau serealia (gandum dan beras), umbi-umbian (kentang, singkong, ubi jalar), dan gula.
Namun demikian, daya cerna tubuh manusia terhadap karbohidrat bermacam-macam bergantung pada sumbernya, yaitu bervariasi antara 90%–98%. Serat menurunkan daya cerna karbohidrat menjadi 85%.Manusia tidak dapat mencerna selulosa sehingga serat selulosa yang dikonsumsi manusia hanya lewat melalui saluran pencernaan dan keluar bersama feses. Serat-serat selulosa mengikis dinding saluran pencernaan dan merangsangnya mengeluarkan lendir yang membantu makanan melewati saluran pencernaan dengan lancar sehingga selulosa disebut sebagai bagian penting dalam menu makanan yang sehat. Contoh makanan yang sangat kaya akan serat selulosa ialah buah-buahan segar, sayur-sayuran, dan biji-bijian.[8]
Selain sebagai sumber energi, karbohidrat juga berfungsi untuk menjaga keseimbangan asam basa di dalam tubuh[rujukan?], berperan penting dalam proses metabolisme dalam tubuh, dan pembentuk struktur sel dengan mengikat protein dan lemak.

Peran sebagai cadangan energi

Beberapa jenis polisakarida berfungsi sebagai materi simpanan atau cadangan, yang nantinya akan dihidrolisis untuk menyediakan gula bagi sel ketika diperlukan. Pati merupakan suatu polisakarida simpanan pada tumbuhan. Tumbuhan menumpuk pati sebagai granul atau butiran di dalam organel plastid, termasuk kloroplas. Dengan mensintesis pati, tumbuhan dapat menimbun kelebihan glukosa. Glukosa merupakan bahan bakar sel yang utama, sehingga pati merupakan energi cadangan.
Sementara itu, hewan menyimpan polisakarida yang disebut glikogen. Manusia dan vertebrata lainnya menyimpan glikogen terutama dalam sel hati dan otot. Penguraian glikogen pada sel-sel ini akan melepaskan glukosa ketika kebutuhan gula meningkat. Namun demikian, glikogen tidak dapat diandalkan sebagai sumber energi hewan untuk jangka waktu lama. Glikogen simpanan akan terkuras habis hanya dalam waktu sehari kecuali kalau dipulihkan kembali dengan mengonsumsi makanan.

Peran sebagai materi pembangun

Organisme membangun materi-materi kuat dari polisakarida struktural. Misalnya, selulosa ialah komponen utama dinding sel tumbuhan. Selulosa bersifat seperti serabut, liat, tidak larut di dalam air, dan ditemukan terutama pada tangkai, batang, dahan, dan semua bagian berkayu dari jaringan tumbuhan.[10] Kayu terutama terbuat dari selulosa dan polisakarida lain, misalnya hemiselulosa dan pektin. Sementara itu, kapas terbuat hampir seluruhnya dari selulosa.
Polisakarida struktural penting lainnya ialah kitin, karbohidrat yang menyusun kerangka luar (eksoskeleton) arthropoda (serangga, laba-laba, crustacea, dan hewan-hewan lain sejenis). Kitin murni mirip seperti kulit, tetapi akan mengeras ketika dilapisi kalsium karbonat. Kitin juga ditemukan pada dinding sel berbagai jenis fungi.[8]
Sementara itu, dinding sel bakteri terbuat dari struktur gabungan karbohidrat polisakarida dengan peptida, disebut peptidoglikan. Dinding sel ini membentuk suatu kulit kaku dan berpori membungkus sel yang memberi perlindungan fisik bagi membran sel yang lunak dan sitoplasma di dalam sel.
Karbohidrat struktural lainnya yang juga merupakan molekul gabungan karbohidrat dengan molekul lain ialah proteoglikan, glikoprotein, dan glikolipid. Proteoglikan maupun glikoprotein terdiri atas karbohidrat dan protein, namun proteoglikan terdiri terutama atas karbohidrat, sedangkan glikoprotein terdiri terutama atas protein. Proteoglikan ditemukan misalnya pada perekat antarsel pada jaringan, tulang rawan, dan cairan sinovial yang melicinkan sendi otot. Sementara itu, glikoprotein dan glikolipid (gabungan karbohidrat dan lipid) banyak ditemukan pada permukaan sel hewan.Karbohidrat pada glikoprotein umumnya berupa oligosakarida dan dapat berfungsi sebagai penanda sel. Misalnya, empat golongan darah manusia pada sistem ABO (A, B, AB, dan O) mencerminkan keragaman oligosakarida pada permukaan sel darah merah.[13]

Klasifikasi karbohidrat

Monosakarida

Monosakarida merupakan karbohidrat paling sederhana karena molekulnya hanya terdiri atas beberapa atom C dan tidak dapat diuraikan dengan cara hidrolisis menjadi karbohidrat lain. Monosakarida dibedakan menjadi aldosa dan ketosa. Contoh dari aldosa yaitu glukosa dan galaktosa. Contoh ketosa yaitu fruktosa.

Disakarida dan oligosakarida

Disakarida merupakan karbohidrat yang terbentuk dari dua molekul monosakarida yang berikatan melalui gugus -OH dengan melepaskan molekul air. Contoh dari disakarida adalah sukrosa, laktosa, dan maltosa. Oligosakarida adalah polimer derajat polimerisasi 2 sampai 10 dan biasanya bersifat larut dalam air. Oligosakarida yang terdiri dari 2 molekul disebut disakarida, dan bila terdiri dari 3 molekul disebut triosa. Bila sukrosa (sakarosa atau gula tebu). Terdiri dari molekul glukosa dan fruktosa, laktosa terdiri dari molekul glukosa dan galaktosa. Polisakarida Polisakarida merupakan polimer molekul-molekul monosakarida yang dapat berantai lurus atau bercabang dan dapat dihidrolisis dengan enzim-enzim yang spesifik kerjanya.

Polisakarida

Polisakarida merupakan karbohidrat yang terbentuk dari banyak sakarida sebagai monomernya. Rumus umum polisakarida yaitu C6(H10O5)n. Contoh polisakarida adalah selulosa, glikogen, dan amilum.

Protein

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas

Segelas susu sapi. Susu sapi merupakan salah satu sumber protein.
Protein (asal kata protos dari bahasa Yunani yang berarti "yang paling utama") adalah senyawa organik kompleks berbobot molekul tinggi yang merupakan polimer dari monomer-monomer asam amino yang dihubungkan satu sama lain dengan ikatan peptida. Molekul protein mengandung karbon, hidrogen, oksigen, nitrogen dan kadang kala sulfur serta fosfor. Protein berperan penting dalam struktur dan fungsi semua sel makhluk hidup dan virus.
Kebanyakan protein merupakan enzim atau subunit enzim. Jenis protein lain berperan dalam fungsi struktural atau mekanis, seperti misalnya protein yang membentuk batang dan sendi sitoskeleton. Protein terlibat dalam sistem kekebalan (imun) sebagai antibodi, sistem kendali dalam bentuk hormon, sebagai komponen penyimpanan (dalam biji) dan juga dalam transportasi hara. Sebagai salah satu sumber gizi, protein berperan sebagai sumber asam amino bagi organisme yang tidak mampu membentuk asam amino tersebut (heterotrof).
Protein merupakan salah satu dari biomolekul raksasa, selain polisakarida, lipid, dan polinukleotida, yang merupakan penyusun utama makhluk hidup. Selain itu, protein merupakan salah satu molekul yang paling banyak diteliti dalam biokimia. Protein ditemukan oleh Jöns Jakob Berzelius pada tahun 1838.
Biosintesis protein alami sama dengan ekspresi genetik. Kode genetik yang dibawa DNA ditranskripsi menjadi RNA, yang berperan sebagai cetakan bagi translasi yang dilakukan ribosom.Sampai tahap ini, protein masih "mentah", hanya tersusun dari asam amino proteinogenik. Melalui mekanisme pascatranslasi, terbentuklah protein yang memiliki fungsi penuh secara biologi.

= == Struktur

Struktur tersier protein. Protein ini memiliki banyak struktur sekunder beta-sheet dan alpha-helix yang sangat pendek. Model dibuat dengan menggunakan koordinat dari Bank Data Protein (nomor 1EDH).
Struktur protein dapat dilihat sebagai hirarki, yaitu berupa struktur primer (tingkat satu), sekunder (tingkat dua), tersier (tingkat tiga), dan kuartener (tingkat empat):
  • struktur primer protein merupakan urutan asam amino penyusun protein yang dihubungkan melalui ikatan peptida (amida). Frederick Sanger merupakan ilmuwan yang berjasa dengan temuan metode penentuan deret asam amino pada protein, dengan penggunaan beberapa enzim protease yang mengiris ikatan antara asam amino tertentu, menjadi fragmen peptida yang lebih pendek untuk dipisahkan lebih lanjut dengan bantuan kertas kromatografik. Urutan asam amino menentukan fungsi protein, pada tahun 1957, Vernon Ingram menemukan bahwa translokasi asam amino akan mengubah fungsi protein, dan lebih lanjut memicu mutasi genetik.
  • struktur sekunder protein adalah struktur tiga dimensi lokal dari berbagai rangkaian asam amino pada protein yang distabilkan oleh ikatan hidrogen. Berbagai bentuk struktur sekunder misalnya ialah sebagai berikut:
    • alpha helix (α-helix, "puntiran-alfa"), berupa pilinan rantai asam-asam amino berbentuk seperti spiral;
    • beta-sheet (β-sheet, "lempeng-beta"), berupa lembaran-lembaran lebar yang tersusun dari sejumlah rantai asam amino yang saling terikat melalui ikatan hidrogen atau ikatan tiol (S-H);
    • beta-turn, (β-turn, "lekukan-beta"); dan
    • gamma-turn, (γ-turn, "lekukan-gamma").
  • struktur tersier yang merupakan gabungan dari aneka ragam dari struktur sekunder. Struktur tersier biasanya berupa gumpalan. Beberapa molekul protein dapat berinteraksi secara fisik tanpa ikatan kovalen membentuk oligomer yang stabil (misalnya dimer, trimer, atau kuartomer) dan membentuk struktur kuartener.
  • contoh struktur kuartener yang terkenal adalah enzim Rubisco dan insulin.
Struktur primer protein bisa ditentukan dengan beberapa metode: (1) hidrolisis protein dengan asam kuat (misalnya, 6N HCl) dan kemudian komposisi asam amino ditentukan dengan instrumen amino acid analyzer, (2) analisis sekuens dari ujung-N dengan menggunakan degradasi Edman, (3) kombinasi dari digesti dengan tripsin dan spektrometri massa, dan  penentuan massa molekular dengan spektrometri massa.
Struktur sekunder bisa ditentukan dengan menggunakan spektroskopi circular dichroism (CD) dan Fourier Transform Infra Red (FTIR). Spektrum CD dari puntiran-alfa menunjukkan dua absorbans negatif pada 208 dan 220 nm dan lempeng-beta menunjukkan satu puncak negatif sekitar 210-216 nm. Estimasi dari komposisi struktur sekunder dari protein bisa dikalkulasi dari spektrum CD. Pada spektrum FTIR, pita amida-I dari puntiran-alfa berbeda dibandingkan dengan pita amida-I dari lempeng-beta. Jadi, komposisi struktur sekunder dari protein juga bisa diestimasi dari spektrum inframerah.
Struktur protein lainnya yang juga dikenal adalah domain. Struktur ini terdiri dari 40-350 asam amino. Protein sederhana umumnya hanya memiliki satu domain. Pada protein yang lebih kompleks, ada beberapa domain yang terlibat di dalamnya. Hubungan rantai polipeptida yang berperan di dalamnya akan menimbulkan sebuah fungsi baru berbeda dengan komponen penyusunnya. Bila struktur domain pada struktur kompleks ini berpisah, maka fungsi biologis masing-masing komponen domain penyusunnya tidak hilang. Inilah yang membedakan struktur domain dengan struktur kuartener. Pada struktur kuartener, setelah struktur kompleksnya berpisah, protein tersebut tidak fungsional.
===

Kekurangan Protein

Protein sendiri mempunyai banyak sekali fungsi di tubuh kita. Pada dasarnya protein menunjang keberadaan setiap sel tubuh, proses kekebalan tubuh. Setiap orang dewasa harus sedikitnya mengonsumsi 1 g protein per kg berat tubuhnya. Kebutuhan akan protein bertambah pada perempuan yang mengandung dan atlet-atlet.
Kekurangan Protein bisa berakibat fatal:
  • Kerontokan rambut (Rambut terdiri dari 97-100% dari Protein -Keratin)
  • Yang paling buruk ada yang disebut dengan Kwasiorkor, penyakit kekurangan protein.Biasanya pada anak-anak kecil yang menderitanya, dapat dilihat dari yang namanya busung lapar, yang disebabkan oleh filtrasi air di dalam pembuluh darah sehingga menimbulkan odem.Simptom yang lain dapat dikenali adalah:
    • hipotonus
    • gangguan pertumbuhan
    • hati lemak
  • Kekurangan yang terus menerus menyebabkan marasmus dan berkibat kematian.

Sintese protein

Artikel utama: Proteinbiosynthese
Dari makanan kita memperoleh Protein. Di sistem pencernaan protein akan diuraikan menjadi peptid peptid yang strukturnya lebih sederhana terdiri dari asam amino. Hal ini dilakukan dengan bantuan enzim. Tubuh manusia memerlukan 9 asam amino. Artinya kesembilan asam amino ini tidak dapat disintesa sendiri oleh tubuh esensiil, sedangkan sebagian asam amino dapat disintesa sendiri atau tidak esensiil oleh tubuh. Keseluruhan berjumlah 21 asam amino. Setelah penyerapan di usus maka akan diberikan ke darah. Darah membawa asam amino itu ke setiap sel tubuh. Kode untuk asam amino tidak esensiil dapat disintesa oleh DNA. Ini disebut dengan DNAtranskripsi. Kemudian karena hasil transkripsi di proses lebih lanjut di ribosom atau retikulum endoplasma, disebut sebagai translasi.

Sumber Protein

  • Daging
  • Ikan
  • Telur
  • Susu, dan produk sejenis Quark
  • Tumbuhan berbji
  • Suku polong-polongan
  • Kentang
Studi dari Biokimiawan USA Thomas Osborne Lafayete Mendel, Profesor untuk biokimia di Yale, 1914, mengujicobakan protein konsumsi dari daging dan tumbuhan kepada kelinci. Satu grup kelinci-kelinci tersebut diberikan makanan protein hewani, sedangkan grup yang lain diberikan protein nabati. Dari eksperimennya didapati bahwa kelinci yang memperoleh protein hewani lebih cepat bertambah beratnya dari kelinci yang memperoleh protein nabati. Kemudian studi selanjutnya, oleh McCay dari Universitas Berkeley menunjukkan bahwa kelinci yang memperoleh protein nabati, lebih sehat dan hidup dua kali lebih lama.

Keuntungan Protein

  • Sumber energi
  • Pembetukan dan perbaikan sel dan jaringan
  • Sebagai sintesis hormon,enzim, dan antibodi
  • Pengatur keseimbangan kadar asam basa dalam sel
  • Sebagai cadangan makanan

Methode Pembuktian Protein

Mineral

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas

Klasifikasi dan definisi mineral

Agar dapat diklasifikasikan sebagai mineral sejati, senyawa tersebut haruslah berupa padatan dan memiliki struktur kristal. Senyawa ini juga harus terbentuk secara alami dan memiliki komposisi kimia yang tertentu. Definisi sebelumnya tidak memasukkan senyawa seperti mineral yang berasal dari turunan senyawa organik. Bagaimanapun juga, The International Mineralogical Association tahun 1995 telah mengajukan definisi baru tentang definisi material:
Mineral adalah suatu unsur atau senyawa yang dalam keadaan normalnya memiliki unsur kristal dan terbentuk dari hasil proses geologi.
Klasifikasi modern telah mengikutsertakan kelas organik kedalam daftar mineral, seperti skema klasifikasi yang diajukan oleh Dana dan Strunz.

Lemak

Lemak (bahasa Inggris: fat) merujuk pada sekelompok besar molekul-molekul alam yang terdiri atas unsur-unsur karbon, hidrogen, dan oksigen meliputi asam lemak, malam, sterol, vitamin-vitamin yang larut di dalam lemak (contohnya A, D, E, dan K), monogliserida, digliserida, fosfolipid, glikolipid, terpenoid (termasuk di dalamnya getah dan steroid) dan lain-lain.
Lemak secara khusus menjadi sebutan bagi minyak hewani pada suhu ruang, lepas dari wujudnya yang padat maupun cair, yang terdapat pada jaringan tubuh yang disebut adiposa.
Pada jaringan adiposa, sel lemak mengeluarkan hormon leptin dan resistin yang berperan dalam sistem kekebalan, hormon sitokina yang berperan dalam komunikasi antar sel. Hormon sitokina yang dihasilkan oleh jaringan adiposa secara khusus disebut hormon adipokina, antara lain kemerin, interleukin-6, plasminogen activator inhibitor-1, retinol binding protein 4 (RBP4), tumor necrosis factor-alpha (TNFα), visfatin, dan hormon metabolik seperti adiponektin dan hormon adipokinetik (Akh).

Sifat dan Ciri ciri

Karena struktur molekulnya yang kaya akan rantai unsur karbon(-CH2-CH2-CH2-)maka lemak mempunyai sifat hydrophob. Ini menjadi alasan yang menjelaskan sulitnya lemak untuk larut di dalam air. Lemak dapat larut hanya di larutan yang apolar atau organik seperti: eter, Chloroform, atau benzol

Fungsi

Secara umum dapat dikatakan bahwa lemak memenuhi fungsi dasar bagi manusia, yaitu: [1]
  1. Menjadi cadangan energi dalam bentuk sel lemak. 1 gram lemak menghasilkan 39.06 kjoule atau 9,3 kcal.
  2. Lemak mempunyai fungsi selular dan komponen struktural pada membran sel yang berkaitan dengan karbohidrat dan protein demi menjalankan aliran air, ion dan molekul lain, keluar dan masuk ke dalam sel.
  3. Menopang fungsi senyawa organik sebagai penghantar sinyal, seperti pada prostaglandin dan steroid hormon dan kelenjar empedu.
  4. Menjadi suspensi bagi vitamin A, D, E dan K yang berguna untuk proses biologis
  5. Berfungsi sebagai penahan goncangan demi melindungi organ vital dan melindungi tubuh dari suhu luar yang kurang bersahabat.
Lemak juga merupakan sarana sirkulasi energi di dalam tubuh dan komponen utama yang membentuk membran semua jenis sel.

Membran

Sel eukariotik disekat-sekat menjadi organel ikatan-membran yang melaksanakan fungsi biologis yang berbeda-beda. Gliserofosfolipid adalah komponen struktural utama dari membran biologis, misalnya membran plasma selular dan membran organel intraselular; di dalam sel-sel hewani membran plasma secara fisik memisahkan komponen intraselular dari lingkungan ekstraselular. Gliserofosfolipid adalah molekul amfipatik (mengandung wilayah hidrofobik dan hidrofilik) yang mengandung inti gliserol yang terkait dengan dua "ekor" turunan asam lemak oleh ikatan-ikatan ester dan ke satu gugus "kepala" oleh suatu ikatan ester fosfat. Sementara gliserofosfolipid adalah komponen utama membran biologis, komponen lipid non-gliserida lainnya seperti sfingomielin dan sterol (terutama kolesterol di dalam membran sel hewani) juga ditemukan di dalam membran biologis. Di dalam tumbuhan dan alga, galaktosildiasilgliserol dan sulfokinovosildiasilgliserol, yang kekurangan gugus fosfat, adalah komponen penting dari membran kloroplas dan organel yang berhubungan dan merupakan lipid yang paling melimpah di dalam jaringan fotosintesis, termasuk tumbuhan tinggi, alga, dan bakteri tertentu.
Dwilapis telah ditemukan untuk memamerkan tingkat-tingkat tinggi dari keterbiasan ganda yang dapat digunakan untuk memeriksa derajat keterurutan (atau kekacauan) di dalam dwilapis menggunakan teknik seperti interferometri polarisasi ganda.
Organisasi-mandiri fosfolipid: liposom bulat, misel, dan dwilapis lipid.

Cadangan energi

Triasilgliserol, tersimpan di dalam jaringan adiposa, adalah bentuk utama dari cadangan energi di tubuh hewan. Adiposit, atau sel lemak, dirancang untuk sintesis dan pemecahan sinambung dari triasilgliserol, dengan pemecahan terutama dikendalikan oleh aktivasi enzim yang peka-hormon, lipase.Oksidasi lengkap asam lemak memberikan materi yang tinggi kalori, kira-kira 9 kkal/g, dibandingkan dengan 4 kkal/g untuk pemecahan karbohidrat dan protein. Burung pehijrah yang harus terbang pada jarak jauh tanpa makan menggunakan cadangan energi triasilgliserol untuk membahanbakari perjalanan mereka.

Pensinyalan

Di beberapa tahun terakhir, bukti telah mengemuka menunjukkan bahwa pensinyalan lipid adalah bagian penting dari pensinyalan sel. Pensinyalan lipid dapat muncul melalui aktivasi reseptor protein G berpasangan atau reseptor nuklir, dan anggota-anggota beberapa kategori lipid yang berbeda telah dikenali sebagai molekul-molekul pensinyalan dan sistem kurir kedua. Semua ini meliputi sfingosina-1-fosfat, sfingolipid yang diturunkan dari seramida yaitu molekul kurir potensial yang terlibat di dalam pengaturan pergerakan kalsium, pertumbuhan sel, dan apoptosis;diasilgliserol (DAG) dan fosfatidilinositol fosfat (PIPs), yang terlibat di dalam aktivasi protein kinase C yang dimediasi kalsium;prostaglandin, yang merupakan satu jenis asam lemak yang diturunkan dari eikosanoid yang terlibat di dalam radang and kekebalan;hormon steroid seperti estrogen, testosteron, dan kortisol, yang memodulasi fungsi reproduksi, metabolisme, dan tekanan darah; dan oksisterol seperti 25-hidroksi-kolesterol yakni agonis reseptor X hati.

Fungsi lainnya

Vitamin-vitamin yang "larut di dalam lemak" (A, D, E, dan K1) – yang merupakan lipid berbasis isoprena – gizi esensial yang tersimpan di dalam jaringan lemak dan hati, dengan rentang fungsi yang berbeda-beda. Asil-karnitina terlibat di dalam pengangkutan dan metabolisme asam lemak di dalam dan di luar mitokondria, di mana mereka mengalami oksidasi beta. Poliprenol dan turunan terfosforilasi juga memainkan peran pengangkutan yang penting, di dalam kasus ini pengangkutan oligosakarida melalui membran. Fungsi gula fosfat poliprenol dan gula difosfat poliprenol di dalam reaksi glikosilasi ekstra-sitoplasmik, di dalam biosintesis polisakarida ekstraselular (misalnya, polimerisasi peptidoglikan di dalam bakteri), dan di dalam protein eukariotik N-glikosilasi. Kardiolipin adalah sub-kelas gliserofosfolipid yang mengandung empat rantai asil dan tiga gugus gliserol yang tersedia melimpah khususnya pada membran mitokondria bagian dalam.Mereka diyakini mengaktivasi enzim-enzim yang terlibat dengan fosforilasi oksidatif.

Metabolisme

Lemak yang menjadi makanan bagi manusia dan hewan lain adalah trigliserida, sterol, dan fosfolipid membran yang ada pada hewan dan tumbuhan. Proses metabolisme lipid menyintesis dan mengurangi cadangan lipid dan menghasilkan karakteristik lipid fungsional dan struktural pada jaringan individu.

Biosintesis

Karena irama laju asupan karbohidrat yang cukup tinggi bagi makhluk hidup dan puri mirip hanoman, maka asupan tersebut harus segera diolah oleh tubuh, menjadi energi maupun disimpan sebagai glikogen. Asupan yang baik terjadi pada saat energi yang terkandung dalam karbohidrat setara dengan energi yang diperlukan oleh tubuh, dan sangat sulit untuk menggapai keseimbangan ini. Ketika asupan karbohidrat menjadi berlebih, maka kelebihan itu akan diubah menjadi lemak. Metabolisme yang terjadi dimulai dari:
Sementara itu:
  • lemak yang terkandung di dalam bahan makanan juga dicerna dengan asam empedu menjadi misel.
  • Misel akan diproses oleh enzim lipase yang disekresi pankreas menjadi asam lemak, gliserol, kemudian masuk melewati celah membran intestin.
  • Setelah melewati dinding usus, asam lemak dan gliserol ditangkap oleh kilomikron dan disimpan di dalam vesikel. Pada vesikel ini terjadi reaksi esterifikasi dan konversi menjadi lipoprotein. Kelebihan lemak darah, akan disimpan di dalam jaringan adiposa, sementara yang lain akan terkonversi menjadi trigliserida, HDL dan LDL. Lemak darah adalah sebuah istilah ambiguitas yang merujuk pada trigliserida sebagai lemak hasil proses pencernaan, sama seperti penggunaan istilah gula darah walaupun:
    • trigliserida terjadi karena proses ester di dalam vesikel kilomikron
    • lemak yang dihasilkan oleh proses pencernaan adalah berbagai macam asam lemak dan gliserol.
Kejadian ini melibatkan sintesis asam lemak dari asetil-KoA dan esterifikasi asam lemak pada saat pembuatan triasilgliserol, suatu proses yang disebut lipogenesis atau sintesis asam lemak. Asam lemak dibuat oleh sintasa asam lemak yang mempolimerisasi dan kemudian mereduksi satuan-satuan asetil-KoA. Rantai asil pada asam lemak diperluas oleh suatu daur reaksi yang menambahkan gugus asetil, mereduksinya menjadi alkohol, mendehidrasinya menjadi gugus alkena dan kemudian mereduksinya kembali menjadi gugus alkana. Enzim-enzim biosintesis asam lemak dibagi ke dalam dua gugus, di dalam hewan dan fungi, semua reaksi sintasa asam lemak ini ditangani oleh protein tunggal multifungsi, sedangkan di dalam tumbuhan, plastid dan bakteri memisahkan kinerja enzim tiap-tiap langkah di dalam lintasannya. Asam lemak dapat diubah menjadi triasilgliserol yang terbungkus di dalam lipoprotein dan disekresi dari hati.
Sintesis asam lemak tak jenuh melibatkan reaksi desaturasa, di mana ikatan ganda diintroduksi ke dalam rantai asil lemak. Misalnya, pada manusia, desaturasi asam stearat oleh stearoil-KoA desaturasa-1 menghasilkan asam oleat. Asam lemak tak jenuh ganda-dua (asam linoleat) juga asam lemak tak jenuh ganda-tiga (asam linolenat) tidak dapat disintesis di dalam jaringan mamalia, dan oleh karena itu asam lemak esensial dan harus diperoleh dari makanan.
Sintesis triasilgliserol terjadi di dalam retikulum endoplasma oleh lintasan metabolisme di mana gugus asil di dalam asil lemak-KoA dipindahkan ke gugus hidroksil dari gliserol-3-fosfat dan diasilgliserol.
Terpena dan terpenoid, termasuk karotenoid, dibuat oleh perakitan dan modifikasi satuan-satuan isoprena yang disumbangkan dari prekursor reaktif isopentenil pirofosfat dan dimetilalil pirofosfat. Prekursor ini dapat dibuat dengan cara yang berbeda-beda. Pada hewan dan archaea, lintasan mevalonat menghasilkan senyawa ini dari asetil-KoA, sedangkan pada tumbuhan dan bakteri lintasan non-mevalonat menggunakan piruvat dan gliseraldehida 3-fosfat sebagai substratnya. Satu reaksi penting yang menggunakan donor isoprena aktif ini adalah biosintesis steroid. Di sini, satuan-satuan isoprena digabungkan untuk membuat skualena dan kemudian dilipat dan dibentuk menjadi sehimpunan cincin untuk membuat lanosterol. Lanosterol kemudian dapat diubah menjadi steroid, seperti kolesterol dan ergosterol.

Degradasi

Oksidasi beta adalah proses metabolisme di mana asam lemak dipecah di dalam mitokondria dan/atau di dalam peroksisoma untuk menghasilkan asetil-KoA. Sebagian besar, asam lemak dioksidasi oleh suatu mekanisme yang sama, tetapi tidak serupa dengan, kebalikan proses sintesis asam lemak. Yaitu, pecahan berkarbon dua dihilangkan berturut-turut dari ujung karboksil dari asam itu setelah langkah-langkah dehidrogenasi, hidrasi, dan oksidasi untuk membentuk asam keto-beta, yang dipecah dengan tiolisis. Asetil-KoA kemudian diubah menjadi Adenosina trifosfat, CO2, dan H2O menggunakan daur asam sitrat dan rantai pengangkutan elektron. Energi yang diperoleh dari oksidasi sempurna asam lemak palmitat adalah 106 ATP.[30] Asam lemak rantai-ganjil dan tak jenuh memerlukan langkah enzimatik tambahan untuk degradasi.

Gizi dan kesehatan

Sebagian besar lipid yang ditemukan di dalam makanan adalah berbentuk triasilgliserol, kolesterol dan fosfolipid. Kadar rendah lemak makanan adalah penting untuk memfasilitasi penyerapan vitamin-vitamin yang larut di dalam lemak (A, D, E, dan K) dan karotenoid.Manusia dan mamalia lainnya memerlukan makanan untuk memenuhi kebutuhan asam lemak esensial tertentu, misalnya asam linoleat (asam lemak omega-6) dan asam alfa-linolenat (sejenis asam lemak omega-3) karena mereka tidak dapat disintesis dari prekursor sederhana di dalam makanan. Kedua-dua asam lemak ini memiliki 18 karbon per molekulnya, lemak majemuk tak jenuh berbeda di dalam jumlah dan kedudukan ikatan gandanya. Sebagian besar minyak nabati adalah kaya akan asam linoleat (safflower, bunga matahari, dan jagung). Asam alfa-linolenat ditemukan di dalam daun hijau tumbuhan, dan di beberapa biji-bijian, kacang-kacangan, dan leguma (khususnya flax, brassica napus, walnut, dan kedelai).Minyak ikan kaya akan asam lemak omega-3 berantai panjang asam eikosapentaenoat dan asam dokosaheksaenoat. Banyak pengkajian telah menunjukkan manfaat kesehatan yang baik yang berhubungan dengan asupan asam lemak omega-3 pada perkembangan bayi, kanker, penyakit kardiovaskular (gangguan jantung), dan berbagai penyakit kejiwaan, seperti depresi, kelainan hiperaktif/kurang memperhatikan, dan demensia. Sebaliknya, kini dinyatakan bahwa asupan lemak trans, yaitu yang ada pada minyak nabati yang dihidrogenasi sebagian, adalah faktor risiko bagi penyakit jantung.[37][38][39]
Beberapa pengkajian menunjukkan bahwa total asupan lemak yang dikonsumsi berhubungan dengan menaiknya risiko kegemukan and diabetes. akan Tetapi, pengkajian lain yang cukup banyak, termasuk Women's Health Initiative Dietary Modification Trial (Percobaan Modifikasi Makanan Inisiatif Kesehatan Perempuan), sebuah pengkajian selama delapan tahun terhadap 49.000 perempuan, Nurses' Health Study (Pengkajian Kesehatan Perawat dan Health Professionals Follow-up Study (Pengkajian Tindak-lanjut Profesional Kesehatan), mengungkapkan ketiadaan hubungan itu.Kedua-dua pengkajian ini tidak menunjukkan adanya hubungan antara dari persentase kalori dari lemak dan risiko kanker, penyakit jantung, atau kelebihan bobot badan. Nutrition Source, sebuah situs web yang dipelihara oleh Departemen Gizi di Sekolah Kesehatan Masyarakat Harvard, mengikhtisarkan bukti-bukti terkini pada dampak lemak makanan: "Sebagian besar rincian penelitian yang dilakukan di Harvard ini menunjukkan bahwa jumlah keseluruhan lemak di dalam makanan tidak berhubungan dengan bobot badan atau penyakit tertentu."
 

1 komentar: